MakeItFrom.com
Menu (ESC)

ASTM Grade HD Steel vs. R30556 Alloy

Both ASTM grade HD steel and R30556 alloy are iron alloys. They have 58% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HD steel and the bottom bar is R30556 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 9.1
45
Fatigue Strength, MPa 140
320
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 80
81
Tensile Strength: Ultimate (UTS), MPa 590
780
Tensile Strength: Yield (Proof), MPa 270
350

Thermal Properties

Latent Heat of Fusion, J/g 310
300
Maximum Temperature: Corrosion, °C 460
450
Maximum Temperature: Mechanical, °C 1100
1100
Melting Completion (Liquidus), °C 1410
1420
Melting Onset (Solidus), °C 1370
1330
Specific Heat Capacity, J/kg-K 490
450
Thermal Conductivity, W/m-K 16
11
Thermal Expansion, µm/m-K 11
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 17
70
Density, g/cm3 7.7
8.4
Embodied Carbon, kg CO2/kg material 3.1
8.7
Embodied Energy, MJ/kg 45
130
Embodied Water, L/kg 180
300

Common Calculations

PREN (Pitting Resistance) 29
40
Resilience: Ultimate (Unit Rupture Work), MJ/m3 44
290
Resilience: Unit (Modulus of Resilience), kJ/m3 180
290
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 26
23
Strength to Weight: Axial, points 21
26
Strength to Weight: Bending, points 20
22
Thermal Diffusivity, mm2/s 4.3
2.9
Thermal Shock Resistance, points 19
18

Alloy Composition

Aluminum (Al), % 0
0.1 to 0.5
Boron (B), % 0
0 to 0.020
Carbon (C), % 0 to 0.5
0.050 to 0.15
Chromium (Cr), % 26 to 30
21 to 23
Cobalt (Co), % 0
16 to 21
Iron (Fe), % 58.4 to 70
20.4 to 38.2
Lanthanum (La), % 0
0.0050 to 0.1
Manganese (Mn), % 0 to 1.5
0.5 to 2.0
Molybdenum (Mo), % 0 to 0.5
2.5 to 4.0
Nickel (Ni), % 4.0 to 7.0
19 to 22.5
Niobium (Nb), % 0
0 to 0.3
Nitrogen (N), % 0
0.1 to 0.3
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 2.0
0.2 to 0.8
Sulfur (S), % 0 to 0.040
0 to 0.015
Tantalum (Ta), % 0
0.3 to 1.3
Tungsten (W), % 0
2.0 to 3.5
Zinc (Zn), % 0
0.0010 to 0.1