MakeItFrom.com
Menu (ESC)

ASTM Grade HE Steel vs. EN 1.4606 Stainless Steel

Both ASTM grade HE steel and EN 1.4606 stainless steel are iron alloys. They have 80% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HE steel and the bottom bar is EN 1.4606 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 10
23 to 39
Fatigue Strength, MPa 160
240 to 420
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 79
75
Tensile Strength: Ultimate (UTS), MPa 670
600 to 1020
Tensile Strength: Yield (Proof), MPa 310
280 to 630

Thermal Properties

Latent Heat of Fusion, J/g 310
300
Maximum Temperature: Corrosion, °C 450
770
Maximum Temperature: Mechanical, °C 1100
910
Melting Completion (Liquidus), °C 1400
1430
Melting Onset (Solidus), °C 1360
1380
Specific Heat Capacity, J/kg-K 490
470
Thermal Conductivity, W/m-K 14
14
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.2

Otherwise Unclassified Properties

Base Metal Price, % relative 19
26
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 3.5
6.0
Embodied Energy, MJ/kg 50
87
Embodied Water, L/kg 190
170

Common Calculations

PREN (Pitting Resistance) 29
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 56
190 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 240
200 to 1010
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 24
21 to 36
Strength to Weight: Bending, points 22
20 to 28
Thermal Diffusivity, mm2/s 3.6
3.7
Thermal Shock Resistance, points 14
21 to 35

Alloy Composition

Aluminum (Al), % 0
0 to 0.35
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0.2 to 0.5
0 to 0.080
Chromium (Cr), % 26 to 30
13 to 16
Iron (Fe), % 53.9 to 65.8
49.2 to 59
Manganese (Mn), % 0 to 2.0
1.0 to 2.0
Molybdenum (Mo), % 0 to 0.5
1.0 to 1.5
Nickel (Ni), % 8.0 to 11
24 to 27
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 2.0
0 to 1.0
Sulfur (S), % 0 to 0.040
0 to 0.015
Titanium (Ti), % 0
1.9 to 2.3
Vanadium (V), % 0
0.1 to 0.5