MakeItFrom.com
Menu (ESC)

ASTM Grade HE Steel vs. EN 1.8201 Steel

Both ASTM grade HE steel and EN 1.8201 steel are iron alloys. They have 63% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HE steel and the bottom bar is EN 1.8201 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
190
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 10
20
Fatigue Strength, MPa 160
310
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 79
74
Tensile Strength: Ultimate (UTS), MPa 670
630
Tensile Strength: Yield (Proof), MPa 310
450

Thermal Properties

Latent Heat of Fusion, J/g 310
250
Maximum Temperature: Mechanical, °C 1100
450
Melting Completion (Liquidus), °C 1400
1500
Melting Onset (Solidus), °C 1360
1450
Specific Heat Capacity, J/kg-K 490
470
Thermal Conductivity, W/m-K 14
40
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 19
7.0
Density, g/cm3 7.7
8.0
Embodied Carbon, kg CO2/kg material 3.5
2.5
Embodied Energy, MJ/kg 50
36
Embodied Water, L/kg 190
59

Common Calculations

PREN (Pitting Resistance) 29
5.7
Resilience: Ultimate (Unit Rupture Work), MJ/m3 56
110
Resilience: Unit (Modulus of Resilience), kJ/m3 240
530
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 24
22
Strength to Weight: Bending, points 22
20
Thermal Diffusivity, mm2/s 3.6
11
Thermal Shock Resistance, points 14
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.030
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0.2 to 0.5
0.040 to 0.1
Chromium (Cr), % 26 to 30
1.9 to 2.6
Iron (Fe), % 53.9 to 65.8
93.6 to 96.2
Manganese (Mn), % 0 to 2.0
0.1 to 0.6
Molybdenum (Mo), % 0 to 0.5
0.050 to 0.3
Nickel (Ni), % 8.0 to 11
0
Niobium (Nb), % 0
0.020 to 0.080
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 2.0
0 to 0.5
Sulfur (S), % 0 to 0.040
0 to 0.010
Titanium (Ti), % 0
0.0050 to 0.060
Tungsten (W), % 0
1.5 to 1.8
Vanadium (V), % 0
0.2 to 0.3