MakeItFrom.com
Menu (ESC)

ASTM Grade HE Steel vs. EN 1.8872 Steel

Both ASTM grade HE steel and EN 1.8872 steel are iron alloys. They have 62% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HE steel and the bottom bar is EN 1.8872 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
180
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 10
21
Fatigue Strength, MPa 160
310
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 79
73
Tensile Strength: Ultimate (UTS), MPa 670
610
Tensile Strength: Yield (Proof), MPa 310
450

Thermal Properties

Latent Heat of Fusion, J/g 310
250
Maximum Temperature: Mechanical, °C 1100
410
Melting Completion (Liquidus), °C 1400
1460
Melting Onset (Solidus), °C 1360
1420
Specific Heat Capacity, J/kg-K 490
470
Thermal Conductivity, W/m-K 14
39
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 19
2.8
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 3.5
1.7
Embodied Energy, MJ/kg 50
22
Embodied Water, L/kg 190
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56
120
Resilience: Unit (Modulus of Resilience), kJ/m3 240
530
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 24
22
Strength to Weight: Bending, points 22
20
Thermal Diffusivity, mm2/s 3.6
10
Thermal Shock Resistance, points 14
18

Alloy Composition

Boron (B), % 0
0 to 0.0050
Carbon (C), % 0.2 to 0.5
0 to 0.18
Chromium (Cr), % 26 to 30
0 to 0.5
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 53.9 to 65.8
95.1 to 100
Manganese (Mn), % 0 to 2.0
0 to 1.7
Molybdenum (Mo), % 0 to 0.5
0 to 0.5
Nickel (Ni), % 8.0 to 11
0 to 1.0
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 2.0
0 to 0.5
Sulfur (S), % 0 to 0.040
0 to 0.0080
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.080
Zirconium (Zr), % 0
0 to 0.050