MakeItFrom.com
Menu (ESC)

ASTM Grade HE Steel vs. C16200 Copper

ASTM grade HE steel belongs to the iron alloys classification, while C16200 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HE steel and the bottom bar is C16200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 10
2.0 to 56
Fatigue Strength, MPa 160
100 to 210
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 79
43
Tensile Strength: Ultimate (UTS), MPa 670
240 to 550
Tensile Strength: Yield (Proof), MPa 310
48 to 470

Thermal Properties

Latent Heat of Fusion, J/g 310
210
Maximum Temperature: Mechanical, °C 1100
370
Melting Completion (Liquidus), °C 1400
1080
Melting Onset (Solidus), °C 1360
1030
Specific Heat Capacity, J/kg-K 490
380
Thermal Conductivity, W/m-K 14
360
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
90
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
90

Otherwise Unclassified Properties

Base Metal Price, % relative 19
30
Density, g/cm3 7.7
9.0
Embodied Carbon, kg CO2/kg material 3.5
2.6
Embodied Energy, MJ/kg 50
41
Embodied Water, L/kg 190
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56
10 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 240
10 to 970
Stiffness to Weight: Axial, points 15
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 24
7.4 to 17
Strength to Weight: Bending, points 22
9.6 to 17
Thermal Diffusivity, mm2/s 3.6
100
Thermal Shock Resistance, points 14
8.7 to 20

Alloy Composition

Cadmium (Cd), % 0
0.7 to 1.2
Carbon (C), % 0.2 to 0.5
0
Chromium (Cr), % 26 to 30
0
Copper (Cu), % 0
98.6 to 99.3
Iron (Fe), % 53.9 to 65.8
0 to 0.2
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 8.0 to 11
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0
Sulfur (S), % 0 to 0.040
0