MakeItFrom.com
Menu (ESC)

ASTM Grade HE Steel vs. C83300 Brass

ASTM grade HE steel belongs to the iron alloys classification, while C83300 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HE steel and the bottom bar is C83300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
35
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 10
35
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 79
42
Tensile Strength: Ultimate (UTS), MPa 670
220
Tensile Strength: Yield (Proof), MPa 310
69

Thermal Properties

Latent Heat of Fusion, J/g 310
200
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1400
1060
Melting Onset (Solidus), °C 1360
1030
Specific Heat Capacity, J/kg-K 490
380
Thermal Conductivity, W/m-K 14
160
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
32
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
33

Otherwise Unclassified Properties

Base Metal Price, % relative 19
30
Density, g/cm3 7.7
8.8
Embodied Carbon, kg CO2/kg material 3.5
2.7
Embodied Energy, MJ/kg 50
44
Embodied Water, L/kg 190
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56
60
Resilience: Unit (Modulus of Resilience), kJ/m3 240
21
Stiffness to Weight: Axial, points 15
7.0
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 24
6.9
Strength to Weight: Bending, points 22
9.2
Thermal Diffusivity, mm2/s 3.6
48
Thermal Shock Resistance, points 14
7.9

Alloy Composition

Carbon (C), % 0.2 to 0.5
0
Chromium (Cr), % 26 to 30
0
Copper (Cu), % 0
92 to 94
Iron (Fe), % 53.9 to 65.8
0
Lead (Pb), % 0
1.0 to 2.0
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 8.0 to 11
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
1.0 to 2.0
Zinc (Zn), % 0
2.0 to 6.0
Residuals, % 0
0 to 0.7