MakeItFrom.com
Menu (ESC)

ASTM Grade HE Steel vs. S36200 Stainless Steel

Both ASTM grade HE steel and S36200 stainless steel are iron alloys. They have 81% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HE steel and the bottom bar is S36200 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 10
3.4 to 4.6
Fatigue Strength, MPa 160
450 to 570
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 79
76
Tensile Strength: Ultimate (UTS), MPa 670
1180 to 1410
Tensile Strength: Yield (Proof), MPa 310
960 to 1240

Thermal Properties

Latent Heat of Fusion, J/g 310
280
Maximum Temperature: Corrosion, °C 450
530
Maximum Temperature: Mechanical, °C 1100
820
Melting Completion (Liquidus), °C 1400
1440
Melting Onset (Solidus), °C 1360
1400
Specific Heat Capacity, J/kg-K 490
480
Thermal Conductivity, W/m-K 14
16
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 19
12
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 3.5
2.8
Embodied Energy, MJ/kg 50
40
Embodied Water, L/kg 190
120

Common Calculations

PREN (Pitting Resistance) 29
15
Resilience: Ultimate (Unit Rupture Work), MJ/m3 56
46 to 51
Resilience: Unit (Modulus of Resilience), kJ/m3 240
2380 to 3930
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 24
42 to 50
Strength to Weight: Bending, points 22
32 to 36
Thermal Diffusivity, mm2/s 3.6
4.3
Thermal Shock Resistance, points 14
40 to 48

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0.2 to 0.5
0 to 0.050
Chromium (Cr), % 26 to 30
14 to 14.5
Iron (Fe), % 53.9 to 65.8
75.4 to 79.5
Manganese (Mn), % 0 to 2.0
0 to 0.5
Molybdenum (Mo), % 0 to 0.5
0 to 0.3
Nickel (Ni), % 8.0 to 11
6.5 to 7.0
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 2.0
0 to 0.3
Sulfur (S), % 0 to 0.040
0 to 0.030
Titanium (Ti), % 0
0.6 to 0.9