MakeItFrom.com
Menu (ESC)

ASTM Grade HF Steel vs. C17465 Copper

ASTM grade HF steel belongs to the iron alloys classification, while C17465 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HF steel and the bottom bar is C17465 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 29
5.3 to 36
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
44
Tensile Strength: Ultimate (UTS), MPa 550
310 to 930
Tensile Strength: Yield (Proof), MPa 270
120 to 830

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 1000
210
Melting Completion (Liquidus), °C 1410
1080
Melting Onset (Solidus), °C 1370
1030
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 16
220
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
22 to 51
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
23 to 52

Otherwise Unclassified Properties

Base Metal Price, % relative 17
45
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 3.2
4.1
Embodied Energy, MJ/kg 46
64
Embodied Water, L/kg 150
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
47 to 90
Resilience: Unit (Modulus of Resilience), kJ/m3 180
64 to 2920
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 20
9.7 to 29
Strength to Weight: Bending, points 19
11 to 24
Thermal Diffusivity, mm2/s 4.2
64
Thermal Shock Resistance, points 12
11 to 33

Alloy Composition

Aluminum (Al), % 0
0 to 0.2
Beryllium (Be), % 0
0.15 to 0.5
Carbon (C), % 0.2 to 0.4
0
Chromium (Cr), % 18 to 23
0
Copper (Cu), % 0
95.7 to 98.7
Iron (Fe), % 60 to 73.8
0 to 0.2
Lead (Pb), % 0
0.2 to 0.6
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 8.0 to 12
1.0 to 1.4
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0 to 0.2
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.5
Residuals, % 0
0 to 0.5