MakeItFrom.com
Menu (ESC)

ASTM Grade HG10 MNN Steel vs. 6013 Aluminum

ASTM grade HG10 MNN steel belongs to the iron alloys classification, while 6013 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM grade HG10 MNN steel and the bottom bar is 6013 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 23
3.4 to 22
Fatigue Strength, MPa 170
98 to 140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Tensile Strength: Ultimate (UTS), MPa 590
310 to 410
Tensile Strength: Yield (Proof), MPa 250
170 to 350

Thermal Properties

Latent Heat of Fusion, J/g 290
410
Maximum Temperature: Mechanical, °C 990
160
Melting Completion (Liquidus), °C 1420
650
Melting Onset (Solidus), °C 1370
580
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 15
150
Thermal Expansion, µm/m-K 16
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
38
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
120

Otherwise Unclassified Properties

Base Metal Price, % relative 21
9.5
Density, g/cm3 7.8
2.8
Embodied Carbon, kg CO2/kg material 4.0
8.3
Embodied Energy, MJ/kg 58
150
Embodied Water, L/kg 160
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
13 to 58
Resilience: Unit (Modulus of Resilience), kJ/m3 160
200 to 900
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
49
Strength to Weight: Axial, points 21
31 to 41
Strength to Weight: Bending, points 20
37 to 44
Thermal Diffusivity, mm2/s 3.9
60
Thermal Shock Resistance, points 13
14 to 18

Alloy Composition

Aluminum (Al), % 0
94.8 to 97.8
Carbon (C), % 0.070 to 0.11
0
Chromium (Cr), % 18.5 to 20.5
0 to 0.1
Copper (Cu), % 0 to 0.5
0.6 to 1.1
Iron (Fe), % 57.9 to 66.5
0 to 0.5
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 3.0 to 5.0
0.2 to 0.8
Molybdenum (Mo), % 0.25 to 0.45
0
Nickel (Ni), % 11.5 to 13.5
0
Niobium (Nb), % 0.2 to 1.0
0
Nitrogen (N), % 0.2 to 0.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.7
0.6 to 1.0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15