MakeItFrom.com
Menu (ESC)

ASTM Grade HG10 MNN Steel vs. ASTM Grade LCB Steel

Both ASTM grade HG10 MNN steel and ASTM grade LCB steel are iron alloys. They have 63% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HG10 MNN steel and the bottom bar is ASTM grade LCB steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 23
27
Fatigue Strength, MPa 170
200
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
72
Tensile Strength: Ultimate (UTS), MPa 590
540
Tensile Strength: Yield (Proof), MPa 250
270

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 990
400
Melting Completion (Liquidus), °C 1420
1450
Melting Onset (Solidus), °C 1370
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
51
Thermal Expansion, µm/m-K 16
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 21
1.8
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 4.0
1.4
Embodied Energy, MJ/kg 58
18
Embodied Water, L/kg 160
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
120
Resilience: Unit (Modulus of Resilience), kJ/m3 160
200
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 21
19
Strength to Weight: Bending, points 20
19
Thermal Diffusivity, mm2/s 3.9
14
Thermal Shock Resistance, points 13
17

Alloy Composition

Carbon (C), % 0.070 to 0.11
0 to 0.3
Chromium (Cr), % 18.5 to 20.5
0
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 57.9 to 66.5
97 to 100
Manganese (Mn), % 3.0 to 5.0
0 to 1.0
Molybdenum (Mo), % 0.25 to 0.45
0
Nickel (Ni), % 11.5 to 13.5
0
Niobium (Nb), % 0.2 to 1.0
0
Nitrogen (N), % 0.2 to 0.3
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 0.7
0 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.045
Residuals, % 0
0 to 1.0