MakeItFrom.com
Menu (ESC)

ASTM Grade HG10 MNN Steel vs. EN 2.4856 Nickel

ASTM grade HG10 MNN steel belongs to the iron alloys classification, while EN 2.4856 nickel belongs to the nickel alloys. They have a modest 36% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HG10 MNN steel and the bottom bar is EN 2.4856 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
210
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 23
28
Fatigue Strength, MPa 170
280
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
79
Tensile Strength: Ultimate (UTS), MPa 590
880
Tensile Strength: Yield (Proof), MPa 250
430

Thermal Properties

Latent Heat of Fusion, J/g 290
330
Maximum Temperature: Mechanical, °C 990
1000
Melting Completion (Liquidus), °C 1420
1480
Melting Onset (Solidus), °C 1370
1430
Specific Heat Capacity, J/kg-K 480
440
Thermal Conductivity, W/m-K 15
10
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 21
80
Density, g/cm3 7.8
8.6
Embodied Carbon, kg CO2/kg material 4.0
14
Embodied Energy, MJ/kg 58
190
Embodied Water, L/kg 160
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
200
Resilience: Unit (Modulus of Resilience), kJ/m3 160
440
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 21
28
Strength to Weight: Bending, points 20
24
Thermal Diffusivity, mm2/s 3.9
2.7
Thermal Shock Resistance, points 13
29

Alloy Composition

Aluminum (Al), % 0
0 to 0.4
Carbon (C), % 0.070 to 0.11
0.030 to 0.1
Chromium (Cr), % 18.5 to 20.5
20 to 23
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0 to 0.5
0 to 0.5
Iron (Fe), % 57.9 to 66.5
0 to 5.0
Manganese (Mn), % 3.0 to 5.0
0 to 0.5
Molybdenum (Mo), % 0.25 to 0.45
8.0 to 10
Nickel (Ni), % 11.5 to 13.5
58 to 68.8
Niobium (Nb), % 0.2 to 1.0
3.2 to 4.2
Nitrogen (N), % 0.2 to 0.3
0
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 0.7
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0
0 to 0.4