MakeItFrom.com
Menu (ESC)

ASTM Grade HG10 MNN Steel vs. C81500 Copper

ASTM grade HG10 MNN steel belongs to the iron alloys classification, while C81500 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HG10 MNN steel and the bottom bar is C81500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
110
Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 23
17
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
44
Tensile Strength: Ultimate (UTS), MPa 590
350
Tensile Strength: Yield (Proof), MPa 250
280

Thermal Properties

Latent Heat of Fusion, J/g 290
210
Maximum Temperature: Mechanical, °C 990
200
Melting Completion (Liquidus), °C 1420
1090
Melting Onset (Solidus), °C 1370
1080
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 15
320
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
82
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
83

Otherwise Unclassified Properties

Base Metal Price, % relative 21
31
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 4.0
2.6
Embodied Energy, MJ/kg 58
41
Embodied Water, L/kg 160
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
56
Resilience: Unit (Modulus of Resilience), kJ/m3 160
330
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 21
11
Strength to Weight: Bending, points 20
12
Thermal Diffusivity, mm2/s 3.9
91
Thermal Shock Resistance, points 13
12

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0.070 to 0.11
0
Chromium (Cr), % 18.5 to 20.5
0.4 to 1.5
Copper (Cu), % 0 to 0.5
97.4 to 99.6
Iron (Fe), % 57.9 to 66.5
0 to 0.1
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 3.0 to 5.0
0
Molybdenum (Mo), % 0.25 to 0.45
0
Nickel (Ni), % 11.5 to 13.5
0
Niobium (Nb), % 0.2 to 1.0
0
Nitrogen (N), % 0.2 to 0.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.7
0 to 0.15
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5