MakeItFrom.com
Menu (ESC)

ASTM Grade HH Steel vs. AISI 441 Stainless Steel

Both ASTM grade HH steel and AISI 441 stainless steel are iron alloys. They have 79% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HH steel and the bottom bar is AISI 441 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
170
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 11
23
Fatigue Strength, MPa 150
180
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 79
77
Tensile Strength: Ultimate (UTS), MPa 580
470
Tensile Strength: Yield (Proof), MPa 270
270

Thermal Properties

Latent Heat of Fusion, J/g 310
280
Maximum Temperature: Corrosion, °C 440
550
Maximum Temperature: Mechanical, °C 1100
910
Melting Completion (Liquidus), °C 1400
1440
Melting Onset (Solidus), °C 1360
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 14
23
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 20
13
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 3.7
2.8
Embodied Energy, MJ/kg 53
41
Embodied Water, L/kg 180
130

Common Calculations

PREN (Pitting Resistance) 27
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 53
92
Resilience: Unit (Modulus of Resilience), kJ/m3 190
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
17
Strength to Weight: Bending, points 20
17
Thermal Diffusivity, mm2/s 3.8
6.1
Thermal Shock Resistance, points 12
16

Alloy Composition

Carbon (C), % 0.2 to 0.5
0 to 0.030
Chromium (Cr), % 24 to 28
17.5 to 19.5
Iron (Fe), % 52.9 to 64.8
76 to 82.2
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 11 to 14
0 to 1.0
Niobium (Nb), % 0
0.3 to 0.9
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 2.0
0 to 1.0
Sulfur (S), % 0 to 0.040
0 to 0.030
Titanium (Ti), % 0
0.1 to 0.5