MakeItFrom.com
Menu (ESC)

ASTM Grade HH Steel vs. ASTM B817 Type I

ASTM grade HH steel belongs to the iron alloys classification, while ASTM B817 type I belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HH steel and the bottom bar is ASTM B817 type I.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 11
4.0 to 13
Fatigue Strength, MPa 150
360 to 520
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 79
40
Tensile Strength: Ultimate (UTS), MPa 580
770 to 960
Tensile Strength: Yield (Proof), MPa 270
700 to 860

Thermal Properties

Latent Heat of Fusion, J/g 310
410
Maximum Temperature: Mechanical, °C 1100
340
Melting Completion (Liquidus), °C 1400
1600
Melting Onset (Solidus), °C 1360
1550
Specific Heat Capacity, J/kg-K 480
560
Thermal Conductivity, W/m-K 14
7.1
Thermal Expansion, µm/m-K 17
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 20
36
Density, g/cm3 7.7
4.4
Embodied Carbon, kg CO2/kg material 3.7
38
Embodied Energy, MJ/kg 53
610
Embodied Water, L/kg 180
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 53
30 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 190
2310 to 3540
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 21
48 to 60
Strength to Weight: Bending, points 20
42 to 49
Thermal Diffusivity, mm2/s 3.8
2.9
Thermal Shock Resistance, points 12
54 to 68

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0.2 to 0.5
0 to 0.1
Chlorine (Cl), % 0
0 to 0.2
Chromium (Cr), % 24 to 28
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 52.9 to 64.8
0 to 0.4
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 11 to 14
0
Nitrogen (N), % 0
0 to 0.040
Oxygen (O), % 0
0 to 0.3
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0 to 0.1
Sodium (Na), % 0
0 to 0.2
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
87 to 91
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4