MakeItFrom.com
Menu (ESC)

ASTM Grade HH Steel vs. C86700 Bronze

ASTM grade HH steel belongs to the iron alloys classification, while C86700 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HH steel and the bottom bar is C86700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 11
17
Poisson's Ratio 0.27
0.31
Shear Modulus, GPa 79
41
Tensile Strength: Ultimate (UTS), MPa 580
630
Tensile Strength: Yield (Proof), MPa 270
250

Thermal Properties

Latent Heat of Fusion, J/g 310
180
Maximum Temperature: Mechanical, °C 1100
130
Melting Completion (Liquidus), °C 1400
880
Melting Onset (Solidus), °C 1360
860
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 14
89
Thermal Expansion, µm/m-K 17
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
17
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
19

Otherwise Unclassified Properties

Base Metal Price, % relative 20
23
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 3.7
2.9
Embodied Energy, MJ/kg 53
49
Embodied Water, L/kg 180
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 53
86
Resilience: Unit (Modulus of Resilience), kJ/m3 190
290
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 21
22
Strength to Weight: Bending, points 20
21
Thermal Diffusivity, mm2/s 3.8
28
Thermal Shock Resistance, points 12
21

Alloy Composition

Aluminum (Al), % 0
1.0 to 3.0
Carbon (C), % 0.2 to 0.5
0
Chromium (Cr), % 24 to 28
0
Copper (Cu), % 0
55 to 60
Iron (Fe), % 52.9 to 64.8
1.0 to 3.0
Lead (Pb), % 0
0.5 to 1.5
Manganese (Mn), % 0 to 2.0
1.0 to 3.5
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 11 to 14
0 to 1.0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0 to 1.5
Zinc (Zn), % 0
30 to 38
Residuals, % 0
0 to 1.0