MakeItFrom.com
Menu (ESC)

ASTM Grade HH Steel vs. S31100 Stainless Steel

Both ASTM grade HH steel and S31100 stainless steel are iron alloys. They have a moderately high 92% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HH steel and the bottom bar is S31100 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
270
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 11
4.5
Fatigue Strength, MPa 150
330
Poisson's Ratio 0.27
0.27
Shear Modulus, GPa 79
79
Tensile Strength: Ultimate (UTS), MPa 580
1000
Tensile Strength: Yield (Proof), MPa 270
710

Thermal Properties

Latent Heat of Fusion, J/g 310
300
Maximum Temperature: Corrosion, °C 440
470
Maximum Temperature: Mechanical, °C 1100
1100
Melting Completion (Liquidus), °C 1400
1420
Melting Onset (Solidus), °C 1360
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 14
16
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 20
16
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 3.7
3.1
Embodied Energy, MJ/kg 53
44
Embodied Water, L/kg 180
170

Common Calculations

PREN (Pitting Resistance) 27
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 53
40
Resilience: Unit (Modulus of Resilience), kJ/m3 190
1240
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
36
Strength to Weight: Bending, points 20
29
Thermal Diffusivity, mm2/s 3.8
4.2
Thermal Shock Resistance, points 12
28

Alloy Composition

Carbon (C), % 0.2 to 0.5
0 to 0.060
Chromium (Cr), % 24 to 28
25 to 27
Iron (Fe), % 52.9 to 64.8
63.6 to 69
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 11 to 14
6.0 to 7.0
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 2.0
0 to 1.0
Sulfur (S), % 0 to 0.040
0 to 0.030
Titanium (Ti), % 0
0 to 0.25