MakeItFrom.com
Menu (ESC)

ASTM Grade HH Steel vs. S40910 Stainless Steel

Both ASTM grade HH steel and S40910 stainless steel are iron alloys. They have 71% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HH steel and the bottom bar is S40910 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
160
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 11
23
Fatigue Strength, MPa 150
130
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 79
75
Tensile Strength: Ultimate (UTS), MPa 580
430
Tensile Strength: Yield (Proof), MPa 270
190

Thermal Properties

Latent Heat of Fusion, J/g 310
270
Maximum Temperature: Corrosion, °C 440
440
Maximum Temperature: Mechanical, °C 1100
710
Melting Completion (Liquidus), °C 1400
1450
Melting Onset (Solidus), °C 1360
1410
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 14
26
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 20
7.0
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 3.7
2.0
Embodied Energy, MJ/kg 53
28
Embodied Water, L/kg 180
94

Common Calculations

PREN (Pitting Resistance) 27
11
Resilience: Ultimate (Unit Rupture Work), MJ/m3 53
80
Resilience: Unit (Modulus of Resilience), kJ/m3 190
94
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
16
Strength to Weight: Bending, points 20
16
Thermal Diffusivity, mm2/s 3.8
6.9
Thermal Shock Resistance, points 12
16

Alloy Composition

Carbon (C), % 0.2 to 0.5
0 to 0.030
Chromium (Cr), % 24 to 28
10.5 to 11.7
Iron (Fe), % 52.9 to 64.8
85 to 89.5
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 11 to 14
0 to 0.5
Niobium (Nb), % 0
0 to 0.17
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 2.0
0 to 1.0
Sulfur (S), % 0 to 0.040
0 to 0.020
Titanium (Ti), % 0
0 to 0.5