MakeItFrom.com
Menu (ESC)

ASTM Grade HI Steel vs. 6101A Aluminum

ASTM grade HI steel belongs to the iron alloys classification, while 6101A aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM grade HI steel and the bottom bar is 6101A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 11
11
Fatigue Strength, MPa 150
80
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 79
26
Tensile Strength: Ultimate (UTS), MPa 550
220
Tensile Strength: Yield (Proof), MPa 270
190

Thermal Properties

Latent Heat of Fusion, J/g 310
400
Maximum Temperature: Mechanical, °C 1100
160
Melting Completion (Liquidus), °C 1400
640
Melting Onset (Solidus), °C 1350
630
Specific Heat Capacity, J/kg-K 490
900
Thermal Conductivity, W/m-K 15
200
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
55
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
180

Otherwise Unclassified Properties

Base Metal Price, % relative 23
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 4.1
8.3
Embodied Energy, MJ/kg 59
150
Embodied Water, L/kg 200
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 52
24
Resilience: Unit (Modulus of Resilience), kJ/m3 180
280
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 20
23
Strength to Weight: Bending, points 19
30
Thermal Diffusivity, mm2/s 3.9
84
Thermal Shock Resistance, points 12
10

Alloy Composition

Aluminum (Al), % 0
97.9 to 99.3
Carbon (C), % 0.2 to 0.5
0
Chromium (Cr), % 26 to 30
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 46.9 to 59.8
0 to 0.4
Magnesium (Mg), % 0
0.4 to 0.9
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 14 to 18
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0.3 to 0.7
Sulfur (S), % 0 to 0.040
0
Residuals, % 0
0 to 0.1