MakeItFrom.com
Menu (ESC)

ASTM Grade HI Steel vs. 7108 Aluminum

ASTM grade HI steel belongs to the iron alloys classification, while 7108 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM grade HI steel and the bottom bar is 7108 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 11
11
Fatigue Strength, MPa 150
120
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 79
26
Tensile Strength: Ultimate (UTS), MPa 550
350
Tensile Strength: Yield (Proof), MPa 270
290

Thermal Properties

Latent Heat of Fusion, J/g 310
380
Maximum Temperature: Mechanical, °C 1100
210
Melting Completion (Liquidus), °C 1400
630
Melting Onset (Solidus), °C 1350
530
Specific Heat Capacity, J/kg-K 490
880
Thermal Conductivity, W/m-K 15
150
Thermal Expansion, µm/m-K 17
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
39
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
120

Otherwise Unclassified Properties

Base Metal Price, % relative 23
9.5
Density, g/cm3 7.8
2.9
Embodied Carbon, kg CO2/kg material 4.1
8.3
Embodied Energy, MJ/kg 59
150
Embodied Water, L/kg 200
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 52
38
Resilience: Unit (Modulus of Resilience), kJ/m3 180
620
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
47
Strength to Weight: Axial, points 20
34
Strength to Weight: Bending, points 19
38
Thermal Diffusivity, mm2/s 3.9
59
Thermal Shock Resistance, points 12
16

Alloy Composition

Aluminum (Al), % 0
92.4 to 94.7
Carbon (C), % 0.2 to 0.5
0
Chromium (Cr), % 26 to 30
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 46.9 to 59.8
0 to 0.1
Magnesium (Mg), % 0
0.7 to 1.4
Manganese (Mn), % 0 to 2.0
0 to 0.050
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 14 to 18
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0 to 0.1
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0 to 0.050
Zinc (Zn), % 0
4.5 to 5.5
Zirconium (Zr), % 0
0.12 to 0.25
Residuals, % 0
0 to 0.15