MakeItFrom.com
Menu (ESC)

ASTM Grade HI Steel vs. B390.0 Aluminum

ASTM grade HI steel belongs to the iron alloys classification, while B390.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM grade HI steel and the bottom bar is B390.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
76
Elongation at Break, % 11
0.88
Fatigue Strength, MPa 150
170
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 79
29
Tensile Strength: Ultimate (UTS), MPa 550
320
Tensile Strength: Yield (Proof), MPa 270
250

Thermal Properties

Latent Heat of Fusion, J/g 310
640
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1400
580
Melting Onset (Solidus), °C 1350
580
Specific Heat Capacity, J/kg-K 490
880
Thermal Conductivity, W/m-K 15
130
Thermal Expansion, µm/m-K 17
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
27
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
88

Otherwise Unclassified Properties

Base Metal Price, % relative 23
11
Density, g/cm3 7.8
2.8
Embodied Carbon, kg CO2/kg material 4.1
7.3
Embodied Energy, MJ/kg 59
130
Embodied Water, L/kg 200
940

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 52
2.6
Resilience: Unit (Modulus of Resilience), kJ/m3 180
410
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 20
32
Strength to Weight: Bending, points 19
38
Thermal Diffusivity, mm2/s 3.9
55
Thermal Shock Resistance, points 12
15

Alloy Composition

Aluminum (Al), % 0
72.7 to 79.6
Carbon (C), % 0.2 to 0.5
0
Chromium (Cr), % 26 to 30
0
Copper (Cu), % 0
4.0 to 5.0
Iron (Fe), % 46.9 to 59.8
0 to 1.3
Magnesium (Mg), % 0
0.45 to 0.65
Manganese (Mn), % 0 to 2.0
0 to 0.5
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 14 to 18
0 to 0.1
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
16 to 18
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0
0 to 0.2