MakeItFrom.com
Menu (ESC)

ASTM Grade HI Steel vs. CC140C Copper

ASTM grade HI steel belongs to the iron alloys classification, while CC140C copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HI steel and the bottom bar is CC140C copper.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
110
Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 11
11
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 79
44
Tensile Strength: Ultimate (UTS), MPa 550
340
Tensile Strength: Yield (Proof), MPa 270
230

Thermal Properties

Latent Heat of Fusion, J/g 310
210
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1400
1100
Melting Onset (Solidus), °C 1350
1040
Specific Heat Capacity, J/kg-K 490
390
Thermal Conductivity, W/m-K 15
310
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
77
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
78

Otherwise Unclassified Properties

Base Metal Price, % relative 23
31
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 4.1
2.6
Embodied Energy, MJ/kg 59
41
Embodied Water, L/kg 200
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 52
34
Resilience: Unit (Modulus of Resilience), kJ/m3 180
220
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 20
10
Strength to Weight: Bending, points 19
12
Thermal Diffusivity, mm2/s 3.9
89
Thermal Shock Resistance, points 12
12

Alloy Composition

Carbon (C), % 0.2 to 0.5
0
Chromium (Cr), % 26 to 30
0.4 to 1.2
Copper (Cu), % 0
98.8 to 99.6
Iron (Fe), % 46.9 to 59.8
0
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 14 to 18
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0
Sulfur (S), % 0 to 0.040
0