MakeItFrom.com
Menu (ESC)

ASTM Grade HI Steel vs. C85500 Brass

ASTM grade HI steel belongs to the iron alloys classification, while C85500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HI steel and the bottom bar is C85500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
85
Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 11
40
Poisson's Ratio 0.27
0.31
Shear Modulus, GPa 79
40
Tensile Strength: Ultimate (UTS), MPa 550
410
Tensile Strength: Yield (Proof), MPa 270
160

Thermal Properties

Latent Heat of Fusion, J/g 310
170
Maximum Temperature: Mechanical, °C 1100
120
Melting Completion (Liquidus), °C 1400
900
Melting Onset (Solidus), °C 1350
890
Specific Heat Capacity, J/kg-K 490
390
Thermal Conductivity, W/m-K 15
120
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
26
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
29

Otherwise Unclassified Properties

Base Metal Price, % relative 23
23
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 4.1
2.7
Embodied Energy, MJ/kg 59
46
Embodied Water, L/kg 200
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 52
130
Resilience: Unit (Modulus of Resilience), kJ/m3 180
120
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 20
14
Strength to Weight: Bending, points 19
15
Thermal Diffusivity, mm2/s 3.9
38
Thermal Shock Resistance, points 12
14

Alloy Composition

Carbon (C), % 0.2 to 0.5
0
Chromium (Cr), % 26 to 30
0
Copper (Cu), % 0
59 to 63
Iron (Fe), % 46.9 to 59.8
0 to 0.2
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 2.0
0 to 0.2
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 14 to 18
0 to 0.2
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
35.1 to 41
Residuals, % 0
0 to 0.9