MakeItFrom.com
Menu (ESC)

ASTM Grade HK Steel vs. C93700 Bronze

ASTM grade HK steel belongs to the iron alloys classification, while C93700 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HK steel and the bottom bar is C93700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
99
Elongation at Break, % 11
20
Fatigue Strength, MPa 150
90
Poisson's Ratio 0.27
0.35
Shear Modulus, GPa 79
37
Tensile Strength: Ultimate (UTS), MPa 500
240
Tensile Strength: Yield (Proof), MPa 270
130

Thermal Properties

Latent Heat of Fusion, J/g 310
170
Maximum Temperature: Mechanical, °C 1100
140
Melting Completion (Liquidus), °C 1400
930
Melting Onset (Solidus), °C 1350
760
Specific Heat Capacity, J/kg-K 480
350
Thermal Conductivity, W/m-K 15
47
Thermal Expansion, µm/m-K 17
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
10
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
10

Otherwise Unclassified Properties

Base Metal Price, % relative 25
33
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 4.4
3.5
Embodied Energy, MJ/kg 63
57
Embodied Water, L/kg 200
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
40
Resilience: Unit (Modulus of Resilience), kJ/m3 190
79
Stiffness to Weight: Axial, points 14
6.2
Stiffness to Weight: Bending, points 25
17
Strength to Weight: Axial, points 18
7.5
Strength to Weight: Bending, points 18
9.6
Thermal Diffusivity, mm2/s 3.9
15
Thermal Shock Resistance, points 11
9.4

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.5
Carbon (C), % 0.2 to 0.6
0
Chromium (Cr), % 24 to 28
0
Copper (Cu), % 0
78 to 82
Iron (Fe), % 44.8 to 57.8
0 to 0.15
Lead (Pb), % 0
8.0 to 11
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 18 to 22
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 0 to 2.0
0 to 0.0050
Sulfur (S), % 0 to 0.040
0 to 0.080
Tin (Sn), % 0
9.0 to 11
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 1.0