MakeItFrom.com
Menu (ESC)

ASTM Grade HL Steel vs. 206.0 Aluminum

ASTM grade HL steel belongs to the iron alloys classification, while 206.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM grade HL steel and the bottom bar is 206.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
95 to 110
Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 11
8.4 to 12
Fatigue Strength, MPa 150
88 to 210
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
27
Tensile Strength: Ultimate (UTS), MPa 500
330 to 440
Tensile Strength: Yield (Proof), MPa 270
190 to 350

Thermal Properties

Latent Heat of Fusion, J/g 320
390
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1390
650
Melting Onset (Solidus), °C 1340
570
Specific Heat Capacity, J/kg-K 490
880
Thermal Expansion, µm/m-K 17
19

Otherwise Unclassified Properties

Base Metal Price, % relative 27
11
Density, g/cm3 7.8
3.0
Embodied Carbon, kg CO2/kg material 4.5
8.0
Embodied Energy, MJ/kg 65
150
Embodied Water, L/kg 210
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
24 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 180
270 to 840
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 18
30 to 40
Strength to Weight: Bending, points 18
35 to 42
Thermal Shock Resistance, points 11
17 to 23

Alloy Composition

Aluminum (Al), % 0
93.3 to 95.3
Carbon (C), % 0.2 to 0.6
0
Chromium (Cr), % 28 to 32
0
Copper (Cu), % 0
4.2 to 5.0
Iron (Fe), % 40.8 to 53.8
0 to 0.15
Magnesium (Mg), % 0
0.15 to 0.35
Manganese (Mn), % 0 to 2.0
0.2 to 0.5
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 18 to 22
0 to 0.050
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0 to 0.1
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0.15 to 0.3
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15