MakeItFrom.com
Menu (ESC)

ASTM Grade HL Steel vs. 319.0 Aluminum

ASTM grade HL steel belongs to the iron alloys classification, while 319.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM grade HL steel and the bottom bar is 319.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
78 to 84
Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 11
1.8 to 2.0
Fatigue Strength, MPa 150
76 to 80
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
27
Tensile Strength: Ultimate (UTS), MPa 500
190 to 240
Tensile Strength: Yield (Proof), MPa 270
110 to 180

Thermal Properties

Latent Heat of Fusion, J/g 320
480
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1390
600
Melting Onset (Solidus), °C 1340
540
Specific Heat Capacity, J/kg-K 490
880
Thermal Expansion, µm/m-K 17
22

Otherwise Unclassified Properties

Base Metal Price, % relative 27
10
Density, g/cm3 7.8
2.9
Embodied Carbon, kg CO2/kg material 4.5
7.7
Embodied Energy, MJ/kg 65
140
Embodied Water, L/kg 210
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
3.3 to 3.9
Resilience: Unit (Modulus of Resilience), kJ/m3 180
88 to 220
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
48
Strength to Weight: Axial, points 18
18 to 24
Strength to Weight: Bending, points 18
25 to 30
Thermal Shock Resistance, points 11
8.6 to 11

Alloy Composition

Aluminum (Al), % 0
85.8 to 91.5
Carbon (C), % 0.2 to 0.6
0
Chromium (Cr), % 28 to 32
0
Copper (Cu), % 0
3.0 to 4.0
Iron (Fe), % 40.8 to 53.8
0 to 1.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 2.0
0 to 0.5
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 18 to 22
0 to 0.35
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
5.5 to 6.5
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5