MakeItFrom.com
Menu (ESC)

ASTM Grade HL Steel vs. 359.0 Aluminum

ASTM grade HL steel belongs to the iron alloys classification, while 359.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM grade HL steel and the bottom bar is 359.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
90 to 100
Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 11
3.8 to 4.9
Fatigue Strength, MPa 150
100
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
27
Tensile Strength: Ultimate (UTS), MPa 500
340 to 350
Tensile Strength: Yield (Proof), MPa 270
250 to 280

Thermal Properties

Latent Heat of Fusion, J/g 320
530
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1390
600
Melting Onset (Solidus), °C 1340
570
Specific Heat Capacity, J/kg-K 490
910
Thermal Expansion, µm/m-K 17
21

Otherwise Unclassified Properties

Base Metal Price, % relative 27
9.5
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 4.5
8.0
Embodied Energy, MJ/kg 65
150
Embodied Water, L/kg 210
1090

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
12 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 180
450 to 540
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
54
Strength to Weight: Axial, points 18
37 to 38
Strength to Weight: Bending, points 18
42 to 43
Thermal Shock Resistance, points 11
16 to 17

Alloy Composition

Aluminum (Al), % 0
88.9 to 91
Carbon (C), % 0.2 to 0.6
0
Chromium (Cr), % 28 to 32
0
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 40.8 to 53.8
0 to 0.2
Magnesium (Mg), % 0
0.5 to 0.7
Manganese (Mn), % 0 to 2.0
0 to 0.1
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 18 to 22
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
8.5 to 9.5
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15