MakeItFrom.com
Menu (ESC)

ASTM Grade HL Steel vs. 4032 Aluminum

ASTM grade HL steel belongs to the iron alloys classification, while 4032 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM grade HL steel and the bottom bar is 4032 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
120
Elastic (Young's, Tensile) Modulus, GPa 200
73
Elongation at Break, % 11
6.7
Fatigue Strength, MPa 150
110
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
28
Tensile Strength: Ultimate (UTS), MPa 500
390
Tensile Strength: Yield (Proof), MPa 270
320

Thermal Properties

Latent Heat of Fusion, J/g 320
570
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1390
570
Melting Onset (Solidus), °C 1340
530
Specific Heat Capacity, J/kg-K 490
900
Thermal Expansion, µm/m-K 17
19

Otherwise Unclassified Properties

Base Metal Price, % relative 27
10
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 4.5
7.8
Embodied Energy, MJ/kg 65
140
Embodied Water, L/kg 210
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
25
Resilience: Unit (Modulus of Resilience), kJ/m3 180
700
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
53
Strength to Weight: Axial, points 18
41
Strength to Weight: Bending, points 18
45
Thermal Shock Resistance, points 11
20

Alloy Composition

Aluminum (Al), % 0
81.1 to 87.2
Carbon (C), % 0.2 to 0.6
0
Chromium (Cr), % 28 to 32
0 to 0.1
Copper (Cu), % 0
0.5 to 1.3
Iron (Fe), % 40.8 to 53.8
0 to 1.0
Magnesium (Mg), % 0
0.8 to 1.3
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 18 to 22
0.5 to 1.3
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
11 to 13.5
Sulfur (S), % 0 to 0.040
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15