MakeItFrom.com
Menu (ESC)

ASTM Grade HL Steel vs. 5383 Aluminum

ASTM grade HL steel belongs to the iron alloys classification, while 5383 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM grade HL steel and the bottom bar is 5383 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
85 to 110
Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 11
6.7 to 15
Fatigue Strength, MPa 150
130 to 200
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
26
Tensile Strength: Ultimate (UTS), MPa 500
310 to 370
Tensile Strength: Yield (Proof), MPa 270
150 to 310

Thermal Properties

Latent Heat of Fusion, J/g 320
390
Maximum Temperature: Corrosion, °C 460
65
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1390
650
Melting Onset (Solidus), °C 1340
540
Specific Heat Capacity, J/kg-K 490
900
Thermal Expansion, µm/m-K 17
24

Otherwise Unclassified Properties

Base Metal Price, % relative 27
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 4.5
9.0
Embodied Energy, MJ/kg 65
160
Embodied Water, L/kg 210
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
23 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 180
170 to 690
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 18
32 to 38
Strength to Weight: Bending, points 18
38 to 42
Thermal Shock Resistance, points 11
14 to 16

Alloy Composition

Aluminum (Al), % 0
92 to 95.3
Carbon (C), % 0.2 to 0.6
0
Chromium (Cr), % 28 to 32
0 to 0.25
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 40.8 to 53.8
0 to 0.25
Magnesium (Mg), % 0
4.0 to 5.2
Manganese (Mn), % 0 to 2.0
0.7 to 1.0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 18 to 22
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0 to 0.25
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.4
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15