MakeItFrom.com
Menu (ESC)

ASTM Grade HL Steel vs. 7022 Aluminum

ASTM grade HL steel belongs to the iron alloys classification, while 7022 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM grade HL steel and the bottom bar is 7022 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 11
6.3 to 8.0
Fatigue Strength, MPa 150
140 to 170
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 80
26
Tensile Strength: Ultimate (UTS), MPa 500
490 to 540
Tensile Strength: Yield (Proof), MPa 270
390 to 460

Thermal Properties

Latent Heat of Fusion, J/g 320
380
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1390
640
Melting Onset (Solidus), °C 1340
480
Specific Heat Capacity, J/kg-K 490
870
Thermal Expansion, µm/m-K 17
24

Otherwise Unclassified Properties

Base Metal Price, % relative 27
10
Density, g/cm3 7.8
2.9
Embodied Carbon, kg CO2/kg material 4.5
8.5
Embodied Energy, MJ/kg 65
150
Embodied Water, L/kg 210
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
29 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 180
1100 to 1500
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
47
Strength to Weight: Axial, points 18
47 to 51
Strength to Weight: Bending, points 18
47 to 50
Thermal Shock Resistance, points 11
21 to 23

Alloy Composition

Aluminum (Al), % 0
87.9 to 92.4
Carbon (C), % 0.2 to 0.6
0
Chromium (Cr), % 28 to 32
0.1 to 0.3
Copper (Cu), % 0
0.5 to 1.0
Iron (Fe), % 40.8 to 53.8
0 to 0.5
Magnesium (Mg), % 0
2.6 to 3.7
Manganese (Mn), % 0 to 2.0
0.1 to 0.4
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 18 to 22
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0 to 0.5
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
4.3 to 5.2
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15