MakeItFrom.com
Menu (ESC)

ASTM Grade HL Steel vs. A357.0 Aluminum

ASTM grade HL steel belongs to the iron alloys classification, while A357.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM grade HL steel and the bottom bar is A357.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
100
Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 11
3.7
Fatigue Strength, MPa 150
100
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
26
Tensile Strength: Ultimate (UTS), MPa 500
350
Tensile Strength: Yield (Proof), MPa 270
270

Thermal Properties

Latent Heat of Fusion, J/g 320
500
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1390
610
Melting Onset (Solidus), °C 1340
560
Specific Heat Capacity, J/kg-K 490
900
Thermal Expansion, µm/m-K 17
21

Otherwise Unclassified Properties

Base Metal Price, % relative 27
12
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 4.5
8.2
Embodied Energy, MJ/kg 65
150
Embodied Water, L/kg 210
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
12
Resilience: Unit (Modulus of Resilience), kJ/m3 180
520
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
53
Strength to Weight: Axial, points 18
38
Strength to Weight: Bending, points 18
43
Thermal Shock Resistance, points 11
17

Alloy Composition

Aluminum (Al), % 0
90.8 to 93
Beryllium (Be), % 0
0.040 to 0.070
Carbon (C), % 0.2 to 0.6
0
Chromium (Cr), % 28 to 32
0
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 40.8 to 53.8
0 to 0.2
Magnesium (Mg), % 0
0.4 to 0.7
Manganese (Mn), % 0 to 2.0
0 to 0.1
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 18 to 22
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
6.5 to 7.5
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0.040 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15