ASTM Grade HL Steel vs. EN 1.5502 Steel
Both ASTM grade HL steel and EN 1.5502 steel are iron alloys. They have 49% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.
For each property being compared, the top bar is ASTM grade HL steel and the bottom bar is EN 1.5502 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 150 | |
120 to 160 |
Elastic (Young's, Tensile) Modulus, GPa | 200 | |
190 |
Elongation at Break, % | 11 | |
12 to 20 |
Fatigue Strength, MPa | 150 | |
190 to 290 |
Poisson's Ratio | 0.27 | |
0.29 |
Shear Modulus, GPa | 80 | |
73 |
Tensile Strength: Ultimate (UTS), MPa | 500 | |
400 to 1380 |
Tensile Strength: Yield (Proof), MPa | 270 | |
270 to 440 |
Thermal Properties
Latent Heat of Fusion, J/g | 320 | |
250 |
Maximum Temperature: Mechanical, °C | 1100 | |
400 |
Melting Completion (Liquidus), °C | 1390 | |
1460 |
Melting Onset (Solidus), °C | 1340 | |
1420 |
Specific Heat Capacity, J/kg-K | 490 | |
470 |
Thermal Expansion, µm/m-K | 17 | |
13 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 27 | |
1.9 |
Density, g/cm3 | 7.8 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 4.5 | |
1.4 |
Embodied Energy, MJ/kg | 65 | |
19 |
Embodied Water, L/kg | 210 | |
47 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 48 | |
41 to 210 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 180 | |
200 to 520 |
Stiffness to Weight: Axial, points | 14 | |
13 |
Stiffness to Weight: Bending, points | 25 | |
24 |
Strength to Weight: Axial, points | 18 | |
14 to 49 |
Strength to Weight: Bending, points | 18 | |
15 to 35 |
Thermal Shock Resistance, points | 11 | |
12 to 40 |
Alloy Composition
Boron (B), % | 0 | |
0.00080 to 0.0050 |
Carbon (C), % | 0.2 to 0.6 | |
0.15 to 0.2 |
Chromium (Cr), % | 28 to 32 | |
0 to 0.3 |
Copper (Cu), % | 0 | |
0 to 0.25 |
Iron (Fe), % | 40.8 to 53.8 | |
98 to 99.249 |
Manganese (Mn), % | 0 to 2.0 | |
0.6 to 0.9 |
Molybdenum (Mo), % | 0 to 0.5 | |
0 |
Nickel (Ni), % | 18 to 22 | |
0 |
Phosphorus (P), % | 0 to 0.040 | |
0 to 0.025 |
Silicon (Si), % | 0 to 2.0 | |
0 to 0.3 |
Sulfur (S), % | 0 to 0.040 | |
0 to 0.025 |