MakeItFrom.com
Menu (ESC)

ASTM Grade HL Steel vs. EN 1.6220 Steel

Both ASTM grade HL steel and EN 1.6220 steel are iron alloys. They have 49% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HL steel and the bottom bar is EN 1.6220 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
170
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 11
23 to 25
Fatigue Strength, MPa 150
240 to 250
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 80
73
Tensile Strength: Ultimate (UTS), MPa 500
550 to 580
Tensile Strength: Yield (Proof), MPa 270
340

Thermal Properties

Latent Heat of Fusion, J/g 320
250
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1390
1460
Melting Onset (Solidus), °C 1340
1420
Specific Heat Capacity, J/kg-K 490
470
Thermal Expansion, µm/m-K 17
13

Otherwise Unclassified Properties

Base Metal Price, % relative 27
2.1
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 4.5
1.5
Embodied Energy, MJ/kg 65
19
Embodied Water, L/kg 210
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 180
300 to 310
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 18
19 to 20
Strength to Weight: Bending, points 18
19 to 20
Thermal Shock Resistance, points 11
16 to 17

Alloy Composition

Carbon (C), % 0.2 to 0.6
0.17 to 0.23
Chromium (Cr), % 28 to 32
0
Iron (Fe), % 40.8 to 53.8
96.7 to 98.8
Manganese (Mn), % 0 to 2.0
1.0 to 1.6
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 18 to 22
0 to 0.8
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 2.0
0 to 0.6
Sulfur (S), % 0 to 0.040
0 to 0.030