MakeItFrom.com
Menu (ESC)

ASTM Grade HL Steel vs. EN AC-41000 Aluminum

ASTM grade HL steel belongs to the iron alloys classification, while EN AC-41000 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM grade HL steel and the bottom bar is EN AC-41000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
57 to 97
Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 11
4.5
Fatigue Strength, MPa 150
58 to 71
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
26
Tensile Strength: Ultimate (UTS), MPa 500
170 to 280
Tensile Strength: Yield (Proof), MPa 270
80 to 210

Thermal Properties

Latent Heat of Fusion, J/g 320
420
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1390
640
Melting Onset (Solidus), °C 1340
630
Specific Heat Capacity, J/kg-K 490
900
Thermal Expansion, µm/m-K 17
23

Otherwise Unclassified Properties

Base Metal Price, % relative 27
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 4.5
8.2
Embodied Energy, MJ/kg 65
150
Embodied Water, L/kg 210
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
6.4 to 11
Resilience: Unit (Modulus of Resilience), kJ/m3 180
46 to 300
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 18
18 to 29
Strength to Weight: Bending, points 18
26 to 35
Thermal Shock Resistance, points 11
7.8 to 13

Alloy Composition

Aluminum (Al), % 0
95.2 to 97.6
Carbon (C), % 0.2 to 0.6
0
Chromium (Cr), % 28 to 32
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 40.8 to 53.8
0 to 0.6
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.45 to 0.65
Manganese (Mn), % 0 to 2.0
0.3 to 0.5
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 18 to 22
0 to 0.050
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
1.6 to 2.4
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0.050 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15