MakeItFrom.com
Menu (ESC)

ASTM Grade HL Steel vs. EN AC-47100 Aluminum

ASTM grade HL steel belongs to the iron alloys classification, while EN AC-47100 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM grade HL steel and the bottom bar is EN AC-47100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
80
Elastic (Young's, Tensile) Modulus, GPa 200
73
Elongation at Break, % 11
1.1
Fatigue Strength, MPa 150
110
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
27
Tensile Strength: Ultimate (UTS), MPa 500
270
Tensile Strength: Yield (Proof), MPa 270
160

Thermal Properties

Latent Heat of Fusion, J/g 320
570
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1390
590
Melting Onset (Solidus), °C 1340
560
Specific Heat Capacity, J/kg-K 490
890
Thermal Expansion, µm/m-K 17
21

Otherwise Unclassified Properties

Base Metal Price, % relative 27
9.5
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 4.5
7.6
Embodied Energy, MJ/kg 65
140
Embodied Water, L/kg 210
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
2.6
Resilience: Unit (Modulus of Resilience), kJ/m3 180
170
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
53
Strength to Weight: Axial, points 18
28
Strength to Weight: Bending, points 18
35
Thermal Shock Resistance, points 11
12

Alloy Composition

Aluminum (Al), % 0
81.4 to 88.8
Carbon (C), % 0.2 to 0.6
0
Chromium (Cr), % 28 to 32
0 to 0.1
Copper (Cu), % 0
0.7 to 1.2
Iron (Fe), % 40.8 to 53.8
0 to 1.3
Lead (Pb), % 0
0 to 0.2
Magnesium (Mg), % 0
0 to 0.35
Manganese (Mn), % 0 to 2.0
0 to 0.55
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 18 to 22
0 to 0.3
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
10.5 to 13.5
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.55
Residuals, % 0
0 to 0.25