MakeItFrom.com
Menu (ESC)

ASTM Grade HL Steel vs. EN AC-71100 Aluminum

ASTM grade HL steel belongs to the iron alloys classification, while EN AC-71100 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM grade HL steel and the bottom bar is EN AC-71100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
110
Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 11
1.1
Fatigue Strength, MPa 150
150
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 80
27
Tensile Strength: Ultimate (UTS), MPa 500
260
Tensile Strength: Yield (Proof), MPa 270
230

Thermal Properties

Latent Heat of Fusion, J/g 320
490
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1390
580
Melting Onset (Solidus), °C 1340
520
Specific Heat Capacity, J/kg-K 490
860
Thermal Expansion, µm/m-K 17
22

Otherwise Unclassified Properties

Base Metal Price, % relative 27
9.5
Density, g/cm3 7.8
2.9
Embodied Carbon, kg CO2/kg material 4.5
7.4
Embodied Energy, MJ/kg 65
140
Embodied Water, L/kg 210
1010

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
2.8
Resilience: Unit (Modulus of Resilience), kJ/m3 180
360
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
47
Strength to Weight: Axial, points 18
25
Strength to Weight: Bending, points 18
31
Thermal Shock Resistance, points 11
12

Alloy Composition

Aluminum (Al), % 0
78.7 to 83.3
Carbon (C), % 0.2 to 0.6
0
Chromium (Cr), % 28 to 32
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 40.8 to 53.8
0 to 0.3
Magnesium (Mg), % 0
0.2 to 0.5
Manganese (Mn), % 0 to 2.0
0 to 0.15
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 18 to 22
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
7.5 to 9.5
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
9.0 to 10.5
Residuals, % 0
0 to 0.15