MakeItFrom.com
Menu (ESC)

ASTM Grade HL Steel vs. C85400 Brass

ASTM grade HL steel belongs to the iron alloys classification, while C85400 brass belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HL steel and the bottom bar is C85400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
55
Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 11
23
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 80
40
Tensile Strength: Ultimate (UTS), MPa 500
220
Tensile Strength: Yield (Proof), MPa 270
85

Thermal Properties

Latent Heat of Fusion, J/g 320
180
Maximum Temperature: Mechanical, °C 1100
130
Melting Completion (Liquidus), °C 1390
940
Melting Onset (Solidus), °C 1340
940
Specific Heat Capacity, J/kg-K 490
380
Thermal Expansion, µm/m-K 17
20

Otherwise Unclassified Properties

Base Metal Price, % relative 27
25
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 4.5
2.8
Embodied Energy, MJ/kg 65
46
Embodied Water, L/kg 210
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
40
Resilience: Unit (Modulus of Resilience), kJ/m3 180
35
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 18
7.5
Strength to Weight: Bending, points 18
9.9
Thermal Shock Resistance, points 11
7.6

Alloy Composition

Aluminum (Al), % 0
0 to 0.35
Carbon (C), % 0.2 to 0.6
0
Chromium (Cr), % 28 to 32
0
Copper (Cu), % 0
65 to 70
Iron (Fe), % 40.8 to 53.8
0 to 0.7
Lead (Pb), % 0
1.5 to 3.8
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 18 to 22
0 to 1.0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0 to 0.050
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0.5 to 1.5
Zinc (Zn), % 0
24 to 32
Residuals, % 0
0 to 1.1