MakeItFrom.com
Menu (ESC)

ASTM Grade HN Steel vs. 213.0 Aluminum

ASTM grade HN steel belongs to the iron alloys classification, while 213.0 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM grade HN steel and the bottom bar is 213.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
85
Elastic (Young's, Tensile) Modulus, GPa 200
73
Elongation at Break, % 9.0
1.5
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
28
Tensile Strength: Ultimate (UTS), MPa 500
190

Thermal Properties

Latent Heat of Fusion, J/g 310
410
Maximum Temperature: Mechanical, °C 1080
170
Melting Completion (Liquidus), °C 1400
670
Melting Onset (Solidus), °C 1350
480
Specific Heat Capacity, J/kg-K 480
850
Thermal Conductivity, W/m-K 13
130
Thermal Expansion, µm/m-K 16
23

Otherwise Unclassified Properties

Base Metal Price, % relative 26
11
Density, g/cm3 7.9
3.2
Embodied Carbon, kg CO2/kg material 4.6
7.7
Embodied Energy, MJ/kg 66
140
Embodied Water, L/kg 180
1090

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
44
Strength to Weight: Axial, points 17
16
Strength to Weight: Bending, points 18
23
Thermal Diffusivity, mm2/s 3.5
49
Thermal Shock Resistance, points 11
8.0

Alloy Composition

Aluminum (Al), % 0
83.5 to 93
Carbon (C), % 0.2 to 0.5
0
Chromium (Cr), % 19 to 23
0
Copper (Cu), % 0
6.0 to 8.0
Iron (Fe), % 44.9 to 57.8
0 to 1.2
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 2.0
0 to 0.6
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 23 to 27
0 to 0.35
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
1.0 to 3.0
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 2.5
Residuals, % 0
0 to 0.5