MakeItFrom.com
Menu (ESC)

ASTM Grade HN Steel vs. 6016 Aluminum

ASTM grade HN steel belongs to the iron alloys classification, while 6016 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM grade HN steel and the bottom bar is 6016 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
55 to 80
Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 9.0
11 to 27
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Tensile Strength: Ultimate (UTS), MPa 500
200 to 280

Thermal Properties

Latent Heat of Fusion, J/g 310
410
Maximum Temperature: Mechanical, °C 1080
160
Melting Completion (Liquidus), °C 1400
660
Melting Onset (Solidus), °C 1350
610
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 13
190 to 210
Thermal Expansion, µm/m-K 16
23

Otherwise Unclassified Properties

Base Metal Price, % relative 26
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 4.6
8.2
Embodied Energy, MJ/kg 66
150
Embodied Water, L/kg 180
1180

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 17
21 to 29
Strength to Weight: Bending, points 18
29 to 35
Thermal Diffusivity, mm2/s 3.5
77 to 86
Thermal Shock Resistance, points 11
9.1 to 12

Alloy Composition

Aluminum (Al), % 0
96.4 to 98.8
Carbon (C), % 0.2 to 0.5
0
Chromium (Cr), % 19 to 23
0 to 0.1
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 44.9 to 57.8
0 to 0.5
Magnesium (Mg), % 0
0.25 to 0.6
Manganese (Mn), % 0 to 2.0
0 to 0.2
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 23 to 27
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
1.0 to 1.5
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15