MakeItFrom.com
Menu (ESC)

ASTM Grade HN Steel vs. ISO-WD32260 Magnesium

ASTM grade HN steel belongs to the iron alloys classification, while ISO-WD32260 magnesium belongs to the magnesium alloys. There are 23 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM grade HN steel and the bottom bar is ISO-WD32260 magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
46
Elongation at Break, % 9.0
4.5 to 6.0
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
18
Tensile Strength: Ultimate (UTS), MPa 500
330 to 340

Thermal Properties

Latent Heat of Fusion, J/g 310
330
Maximum Temperature: Mechanical, °C 1080
120
Melting Completion (Liquidus), °C 1400
600
Melting Onset (Solidus), °C 1350
520
Specific Heat Capacity, J/kg-K 480
970
Thermal Conductivity, W/m-K 13
110
Thermal Expansion, µm/m-K 16
27

Otherwise Unclassified Properties

Base Metal Price, % relative 26
13
Density, g/cm3 7.9
1.9
Embodied Carbon, kg CO2/kg material 4.6
23
Embodied Energy, MJ/kg 66
160
Embodied Water, L/kg 180
940

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
63
Strength to Weight: Axial, points 17
48 to 51
Strength to Weight: Bending, points 18
56 to 58
Thermal Diffusivity, mm2/s 3.5
63
Thermal Shock Resistance, points 11
19 to 20

Alloy Composition

Carbon (C), % 0.2 to 0.5
0
Chromium (Cr), % 19 to 23
0
Iron (Fe), % 44.9 to 57.8
0
Magnesium (Mg), % 0
92.7 to 94.8
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 23 to 27
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0
Sulfur (S), % 0 to 0.040
0
Zinc (Zn), % 0
4.8 to 6.2
Zirconium (Zr), % 0
0.45 to 0.8
Residuals, % 0
0 to 0.3