MakeItFrom.com
Menu (ESC)

ASTM Grade HP Steel vs. C17500 Copper

ASTM grade HP steel belongs to the iron alloys classification, while C17500 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HP steel and the bottom bar is C17500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 5.1
6.0 to 30
Fatigue Strength, MPa 130
170 to 310
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
45
Tensile Strength: Ultimate (UTS), MPa 490
310 to 860
Tensile Strength: Yield (Proof), MPa 260
170 to 760

Thermal Properties

Latent Heat of Fusion, J/g 320
220
Maximum Temperature: Mechanical, °C 1100
220
Melting Completion (Liquidus), °C 1370
1060
Melting Onset (Solidus), °C 1330
1020
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 12
200
Thermal Expansion, µm/m-K 16
18

Otherwise Unclassified Properties

Base Metal Price, % relative 34
60
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 5.8
4.7
Embodied Energy, MJ/kg 82
73
Embodied Water, L/kg 220
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
30 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 170
120 to 2390
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 17
9.7 to 27
Strength to Weight: Bending, points 17
11 to 23
Thermal Diffusivity, mm2/s 3.2
59
Thermal Shock Resistance, points 11
11 to 29

Alloy Composition

Aluminum (Al), % 0
0 to 0.2
Beryllium (Be), % 0
0.4 to 0.7
Carbon (C), % 0.35 to 0.75
0
Chromium (Cr), % 24 to 28
0
Cobalt (Co), % 0
2.4 to 2.7
Copper (Cu), % 0
95.6 to 97.2
Iron (Fe), % 29.2 to 42.7
0 to 0.1
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 33 to 37
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.5
0 to 0.2
Sulfur (S), % 0 to 0.040
0
Residuals, % 0
0 to 0.5