MakeItFrom.com
Menu (ESC)

ASTM Grade HT Steel vs. 5010 Aluminum

ASTM grade HT steel belongs to the iron alloys classification, while 5010 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM grade HT steel and the bottom bar is 5010 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
27 to 62
Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 4.6
1.1 to 23
Fatigue Strength, MPa 130
35 to 83
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Tensile Strength: Ultimate (UTS), MPa 500
100 to 210
Tensile Strength: Yield (Proof), MPa 270
38 to 190

Thermal Properties

Latent Heat of Fusion, J/g 310
400
Maximum Temperature: Mechanical, °C 1010
180
Melting Completion (Liquidus), °C 1390
650
Melting Onset (Solidus), °C 1340
630
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 12
200
Thermal Expansion, µm/m-K 15
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
45
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
150

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.5
Density, g/cm3 8.0
2.7
Embodied Carbon, kg CO2/kg material 5.4
8.2
Embodied Energy, MJ/kg 76
150
Embodied Water, L/kg 190
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
2.3 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 180
10 to 270
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 18
10 to 22
Strength to Weight: Bending, points 18
18 to 29
Thermal Diffusivity, mm2/s 3.2
82
Thermal Shock Resistance, points 12
4.5 to 9.4

Alloy Composition

Aluminum (Al), % 0
97.1 to 99.7
Carbon (C), % 0.35 to 0.75
0
Chromium (Cr), % 15 to 19
0 to 0.15
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 38.2 to 51.7
0 to 0.7
Magnesium (Mg), % 0
0.2 to 0.6
Manganese (Mn), % 0 to 2.0
0.1 to 0.3
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 33 to 37
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.5
0 to 0.4
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.15