MakeItFrom.com
Menu (ESC)

ASTM Grade HT Steel vs. ASTM A182 Grade F92

Both ASTM grade HT steel and ASTM A182 grade F92 are iron alloys. They have 55% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HT steel and the bottom bar is ASTM A182 grade F92.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
240
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 4.6
22
Fatigue Strength, MPa 130
360
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Tensile Strength: Ultimate (UTS), MPa 500
690
Tensile Strength: Yield (Proof), MPa 270
500

Thermal Properties

Latent Heat of Fusion, J/g 310
260
Maximum Temperature: Mechanical, °C 1010
590
Melting Completion (Liquidus), °C 1390
1490
Melting Onset (Solidus), °C 1340
1450
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 12
26
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
9.3
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
10

Otherwise Unclassified Properties

Base Metal Price, % relative 31
11
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 5.4
2.8
Embodied Energy, MJ/kg 76
40
Embodied Water, L/kg 190
89

Common Calculations

PREN (Pitting Resistance) 18
14
Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
140
Resilience: Unit (Modulus of Resilience), kJ/m3 180
650
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 18
24
Strength to Weight: Bending, points 18
22
Thermal Diffusivity, mm2/s 3.2
6.9
Thermal Shock Resistance, points 12
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0.35 to 0.75
0.070 to 0.13
Chromium (Cr), % 15 to 19
8.5 to 9.5
Iron (Fe), % 38.2 to 51.7
85.8 to 89.1
Manganese (Mn), % 0 to 2.0
0.3 to 0.6
Molybdenum (Mo), % 0 to 0.5
0.3 to 0.6
Nickel (Ni), % 33 to 37
0 to 0.4
Niobium (Nb), % 0
0.040 to 0.090
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 2.5
0 to 0.5
Sulfur (S), % 0 to 0.040
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
1.5 to 2.0
Vanadium (V), % 0
0.15 to 0.25
Zirconium (Zr), % 0
0 to 0.010