MakeItFrom.com
Menu (ESC)

ASTM Grade HT Steel vs. EN 1.7767 Steel

Both ASTM grade HT steel and EN 1.7767 steel are iron alloys. They have 49% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HT steel and the bottom bar is EN 1.7767 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
200 to 210
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 4.6
20
Fatigue Strength, MPa 130
320 to 340
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
74
Tensile Strength: Ultimate (UTS), MPa 500
670 to 690
Tensile Strength: Yield (Proof), MPa 270
460 to 500

Thermal Properties

Latent Heat of Fusion, J/g 310
250
Maximum Temperature: Mechanical, °C 1010
480
Melting Completion (Liquidus), °C 1390
1470
Melting Onset (Solidus), °C 1340
1430
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 12
40
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 31
4.5
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 5.4
2.4
Embodied Energy, MJ/kg 76
33
Embodied Water, L/kg 190
64

Common Calculations

PREN (Pitting Resistance) 18
6.4
Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
120 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 180
570 to 650
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 18
24
Strength to Weight: Bending, points 18
22
Thermal Diffusivity, mm2/s 3.2
11
Thermal Shock Resistance, points 12
19 to 20

Alloy Composition

Carbon (C), % 0.35 to 0.75
0.1 to 0.15
Chromium (Cr), % 15 to 19
2.8 to 3.3
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 38.2 to 51.7
93.8 to 95.8
Manganese (Mn), % 0 to 2.0
0.3 to 0.6
Molybdenum (Mo), % 0 to 0.5
0.9 to 1.1
Nickel (Ni), % 33 to 37
0 to 0.25
Niobium (Nb), % 0
0 to 0.070
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0 to 0.040
0 to 0.015
Silicon (Si), % 0 to 2.5
0 to 0.15
Sulfur (S), % 0 to 0.040
0 to 0.0050
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0.2 to 0.3