MakeItFrom.com
Menu (ESC)

ASTM Grade HT Steel vs. EN AC-46500 Aluminum

ASTM grade HT steel belongs to the iron alloys classification, while EN AC-46500 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM grade HT steel and the bottom bar is EN AC-46500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
91
Elastic (Young's, Tensile) Modulus, GPa 190
74
Elongation at Break, % 4.6
1.0
Fatigue Strength, MPa 130
110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
28
Tensile Strength: Ultimate (UTS), MPa 500
270
Tensile Strength: Yield (Proof), MPa 270
160

Thermal Properties

Latent Heat of Fusion, J/g 310
520
Maximum Temperature: Mechanical, °C 1010
180
Melting Completion (Liquidus), °C 1390
610
Melting Onset (Solidus), °C 1340
520
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 12
100
Thermal Expansion, µm/m-K 15
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
26
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
81

Otherwise Unclassified Properties

Base Metal Price, % relative 31
10
Density, g/cm3 8.0
2.9
Embodied Carbon, kg CO2/kg material 5.4
7.6
Embodied Energy, MJ/kg 76
140
Embodied Water, L/kg 190
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 180
170
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
49
Strength to Weight: Axial, points 18
26
Strength to Weight: Bending, points 18
32
Thermal Diffusivity, mm2/s 3.2
41
Thermal Shock Resistance, points 12
12

Alloy Composition

Aluminum (Al), % 0
77.9 to 90
Carbon (C), % 0.35 to 0.75
0
Chromium (Cr), % 15 to 19
0 to 0.15
Copper (Cu), % 0
2.0 to 4.0
Iron (Fe), % 38.2 to 51.7
0 to 1.3
Lead (Pb), % 0
0 to 0.35
Magnesium (Mg), % 0
0.050 to 0.55
Manganese (Mn), % 0 to 2.0
0 to 0.55
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 33 to 37
0 to 0.55
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.5
8.0 to 11
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 3.0
Residuals, % 0
0 to 0.25