MakeItFrom.com
Menu (ESC)

ASTM Grade HT Steel vs. C42200 Brass

ASTM grade HT steel belongs to the iron alloys classification, while C42200 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HT steel and the bottom bar is C42200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 4.6
2.0 to 46
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
42
Tensile Strength: Ultimate (UTS), MPa 500
300 to 610
Tensile Strength: Yield (Proof), MPa 270
100 to 570

Thermal Properties

Latent Heat of Fusion, J/g 310
200
Maximum Temperature: Mechanical, °C 1010
170
Melting Completion (Liquidus), °C 1390
1040
Melting Onset (Solidus), °C 1340
1020
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 12
130
Thermal Expansion, µm/m-K 15
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
31
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
32

Otherwise Unclassified Properties

Base Metal Price, % relative 31
29
Density, g/cm3 8.0
8.6
Embodied Carbon, kg CO2/kg material 5.4
2.7
Embodied Energy, MJ/kg 76
44
Embodied Water, L/kg 190
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
12 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 180
49 to 1460
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 18
9.5 to 19
Strength to Weight: Bending, points 18
11 to 18
Thermal Diffusivity, mm2/s 3.2
39
Thermal Shock Resistance, points 12
10 to 21

Alloy Composition

Carbon (C), % 0.35 to 0.75
0
Chromium (Cr), % 15 to 19
0
Copper (Cu), % 0
86 to 89
Iron (Fe), % 38.2 to 51.7
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 33 to 37
0
Phosphorus (P), % 0 to 0.040
0 to 0.35
Silicon (Si), % 0 to 2.5
0
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0.8 to 1.4
Zinc (Zn), % 0
8.7 to 13.2
Residuals, % 0
0 to 0.5