MakeItFrom.com
Menu (ESC)

ASTM Grade HT Steel vs. C93400 Bronze

ASTM grade HT steel belongs to the iron alloys classification, while C93400 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HT steel and the bottom bar is C93400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 4.6
9.1
Poisson's Ratio 0.28
0.35
Shear Modulus, GPa 76
38
Tensile Strength: Ultimate (UTS), MPa 500
270
Tensile Strength: Yield (Proof), MPa 270
150

Thermal Properties

Latent Heat of Fusion, J/g 310
180
Maximum Temperature: Mechanical, °C 1010
150
Melting Completion (Liquidus), °C 1390
950
Melting Onset (Solidus), °C 1340
850
Specific Heat Capacity, J/kg-K 480
350
Thermal Conductivity, W/m-K 12
58
Thermal Expansion, µm/m-K 15
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
12
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
12

Otherwise Unclassified Properties

Base Metal Price, % relative 31
32
Density, g/cm3 8.0
8.9
Embodied Carbon, kg CO2/kg material 5.4
3.3
Embodied Energy, MJ/kg 76
54
Embodied Water, L/kg 190
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
21
Resilience: Unit (Modulus of Resilience), kJ/m3 180
120
Stiffness to Weight: Axial, points 13
6.3
Stiffness to Weight: Bending, points 24
17
Strength to Weight: Axial, points 18
8.3
Strength to Weight: Bending, points 18
10
Thermal Diffusivity, mm2/s 3.2
18
Thermal Shock Resistance, points 12
10

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.5
Carbon (C), % 0.35 to 0.75
0
Chromium (Cr), % 15 to 19
0
Copper (Cu), % 0
82 to 85
Iron (Fe), % 38.2 to 51.7
0 to 0.2
Lead (Pb), % 0
7.0 to 9.0
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 33 to 37
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 0 to 2.5
0 to 0.0050
Sulfur (S), % 0 to 0.040
0 to 0.080
Tin (Sn), % 0
7.0 to 9.0
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 1.0