MakeItFrom.com
Menu (ESC)

ASTM Grade LC1 Steel vs. 711.0 Aluminum

ASTM grade LC1 steel belongs to the iron alloys classification, while 711.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM grade LC1 steel and the bottom bar is 711.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
70
Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 27
7.8
Fatigue Strength, MPa 200
100
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
27
Tensile Strength: Ultimate (UTS), MPa 540
220
Tensile Strength: Yield (Proof), MPa 270
140

Thermal Properties

Latent Heat of Fusion, J/g 250
380
Maximum Temperature: Mechanical, °C 410
170
Melting Completion (Liquidus), °C 1470
640
Melting Onset (Solidus), °C 1420
610
Specific Heat Capacity, J/kg-K 470
860
Thermal Conductivity, W/m-K 50
160
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
40
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
120

Otherwise Unclassified Properties

Base Metal Price, % relative 2.4
9.5
Density, g/cm3 7.9
3.0
Embodied Carbon, kg CO2/kg material 1.5
7.9
Embodied Energy, MJ/kg 20
150
Embodied Water, L/kg 47
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
15
Resilience: Unit (Modulus of Resilience), kJ/m3 200
140
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
45
Strength to Weight: Axial, points 19
20
Strength to Weight: Bending, points 19
26
Thermal Diffusivity, mm2/s 13
61
Thermal Shock Resistance, points 16
9.3

Alloy Composition

Aluminum (Al), % 0
89.8 to 92.7
Carbon (C), % 0 to 0.25
0
Copper (Cu), % 0
0.35 to 0.65
Iron (Fe), % 97.6 to 99.05
0.7 to 1.4
Magnesium (Mg), % 0
0.25 to 0.45
Manganese (Mn), % 0.5 to 0.8
0 to 0.050
Molybdenum (Mo), % 0.45 to 0.65
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.6
0 to 0.3
Sulfur (S), % 0 to 0.045
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
6.0 to 7.0
Residuals, % 0
0 to 0.15