MakeItFrom.com
Menu (ESC)

ASTM Grade LC1 Steel vs. EN 1.0456 Steel

Both ASTM grade LC1 steel and EN 1.0456 steel are iron alloys. Their average alloy composition is basically identical. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LC1 steel and the bottom bar is EN 1.0456 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
120 to 130
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 27
24 to 26
Fatigue Strength, MPa 200
210 to 220
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Tensile Strength: Ultimate (UTS), MPa 540
420 to 450
Tensile Strength: Yield (Proof), MPa 270
290 to 300

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 410
400
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 50
48
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 2.4
2.2
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.5
1.5
Embodied Energy, MJ/kg 20
20
Embodied Water, L/kg 47
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
93 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 200
220 to 230
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 19
15 to 16
Strength to Weight: Bending, points 19
16 to 17
Thermal Diffusivity, mm2/s 13
13
Thermal Shock Resistance, points 16
13 to 14

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0 to 0.25
0 to 0.2
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0
0 to 0.35
Iron (Fe), % 97.6 to 99.05
96.7 to 99.48
Manganese (Mn), % 0.5 to 0.8
0.5 to 1.4
Molybdenum (Mo), % 0.45 to 0.65
0 to 0.1
Nickel (Ni), % 0
0 to 0.3
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 0.6
0 to 0.4
Sulfur (S), % 0 to 0.045
0 to 0.030
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.050