MakeItFrom.com
Menu (ESC)

ASTM Grade LC1 Steel vs. EN 1.7338 Steel

Both ASTM grade LC1 steel and EN 1.7338 steel are iron alloys. Both are furnished in the normalized and tempered condition. They have a very high 98% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LC1 steel and the bottom bar is EN 1.7338 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
150
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 27
23
Fatigue Strength, MPa 200
220
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Tensile Strength: Ultimate (UTS), MPa 540
490
Tensile Strength: Yield (Proof), MPa 270
300

Thermal Properties

Latent Heat of Fusion, J/g 250
260
Maximum Temperature: Mechanical, °C 410
430
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 50
40
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 2.4
3.1
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.5
1.6
Embodied Energy, MJ/kg 20
21
Embodied Water, L/kg 47
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
97
Resilience: Unit (Modulus of Resilience), kJ/m3 200
240
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 19
17
Strength to Weight: Bending, points 19
18
Thermal Diffusivity, mm2/s 13
11
Thermal Shock Resistance, points 16
14

Alloy Composition

Aluminum (Al), % 0
0 to 0.040
Carbon (C), % 0 to 0.25
0 to 0.15
Chromium (Cr), % 0
1.0 to 1.5
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 97.6 to 99.05
95.4 to 97.8
Manganese (Mn), % 0.5 to 0.8
0.3 to 0.6
Molybdenum (Mo), % 0.45 to 0.65
0.45 to 0.65
Nickel (Ni), % 0
0 to 0.3
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 0.6
0.5 to 1.0
Sulfur (S), % 0 to 0.045
0 to 0.010