MakeItFrom.com
Menu (ESC)

ASTM Grade LC1 Steel vs. EN 1.8961 Steel

Both ASTM grade LC1 steel and EN 1.8961 steel are iron alloys. They have a very high 98% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LC1 steel and the bottom bar is EN 1.8961 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
130
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 27
19
Fatigue Strength, MPa 200
150
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Tensile Strength: Ultimate (UTS), MPa 540
430
Tensile Strength: Yield (Proof), MPa 270
220

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 410
410
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 50
45
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 2.4
2.6
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.5
1.7
Embodied Energy, MJ/kg 20
23
Embodied Water, L/kg 47
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
70
Resilience: Unit (Modulus of Resilience), kJ/m3 200
130
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 19
15
Strength to Weight: Bending, points 19
16
Thermal Diffusivity, mm2/s 13
12
Thermal Shock Resistance, points 16
13

Alloy Composition

Aluminum (Al), % 0
0 to 0.030
Carbon (C), % 0 to 0.25
0 to 0.16
Chromium (Cr), % 0
0.35 to 0.85
Copper (Cu), % 0
0.2 to 0.6
Iron (Fe), % 97.6 to 99.05
96.1 to 99.3
Manganese (Mn), % 0.5 to 0.8
0.15 to 0.7
Molybdenum (Mo), % 0.45 to 0.65
0
Nickel (Ni), % 0
0 to 0.7
Niobium (Nb), % 0
0 to 0.065
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 0.6
0 to 0.45
Sulfur (S), % 0 to 0.045
0 to 0.035
Titanium (Ti), % 0
0 to 0.12
Vanadium (V), % 0
0 to 0.14